

Equivalent circuit models for an amplifier

A_{vo}: Open-Circuit Voltage Gain

R₀: Output Resistance

Various types of amplifiers

Voltage Amplifier

Current Amplifier

Transconductance Amplifier

$$R_i = \infty$$
$$R_o = \infty$$

Transimpedance (Transresistance) Amplifier

How can we make amplifiers with MOSFET(s)?

CS Amplifiers

CS Amplifiers

small-signal model

$$A_{vo} = \frac{v_{out}}{v_{in}} = -g_m(r_o//R_D)$$

$$R_{in} = \infty$$
$$R_{out} = r_o / / R_D$$

CS Amplifiers

Signal Swing?

Max. v_{OUT} ? V_{DD}

When MOSFET is in cut-off

Min. v_{OUT}?

When MOSFET enters triode region

$$v_{DS} = v_{GS} - V_T$$

 $v_{OUT} - V_{SS} = V_{GG} - V_{SS} - V_{T}$ (ignoring vs)

$$v_{OUT,min} = V_{GG} - V_{T}$$

CS Amplifiers

small-signal model

For large A_{vo} , R_D should be large \rightarrow Good transconductance amplifier But large R_D is not desirable

→Use current source instead of R_D (active load)

CS Amplifier with current source (active load)

CS Amplifier with current source (active load)

small-signal model

R_{out} = ?

